Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Top Membr ; 89: 189-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210149

RESUMO

The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.


Assuntos
Retina , Canais de Cátion TRPV , Animais , Córnea/metabolismo , Lipídeos , Canais de Cátion TRPV/metabolismo , Vertebrados/metabolismo
2.
Front Immunol ; 13: 805076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432302

RESUMO

Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.


Assuntos
Canais de Cátion TRPM , Malha Trabecular , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Mecanotransdução Celular , Camundongos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Malha Trabecular/metabolismo
3.
Glia ; 69(6): 1563-1582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624376

RESUMO

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.


Assuntos
Microglia , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Microglia/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Canais de Cátion TRPV/genética
4.
J Physiol ; 599(2): 571-592, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226641

RESUMO

KEY POINTS: Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye. ABSTRACT: Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure-induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1-deficient cells. The majority of TM cells exhibited a delayed stretch-activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell-matrix contacts. Analysis of TM-dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.


Assuntos
Humor Aquoso , Malha Trabecular , Citoesqueleto , Humanos , Pressão Intraocular , Canais Iônicos/genética , Mecanotransdução Celular , Canais de Cátion TRPV
5.
Invest Ophthalmol Vis Sci ; 61(4): 2, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271891

RESUMO

Purpose: Contact lenses, osmotic stressors, and chemical burns may trigger severe discomfort and vision loss by damaging the cornea, but the signaling mechanisms used by corneal epithelial cells (CECs) to sense extrinsic stressors are not well understood. We therefore investigated the mechanisms of swelling, temperature, strain, and chemical transduction in mouse CECs. Methods: Intracellular calcium imaging in conjunction with electrophysiology, pharmacology, transcript analysis, immunohistochemistry, and bioluminescence assays of adenosine triphosphate (ATP) release were used to track mechanotransduction in dissociated CECs and epithelial sheets isolated from the mouse cornea. Results: The transient receptor potential vanilloid (TRPV) transcriptome in the mouse corneal epithelium is dominated by Trpv4, followed by Trpv2, Trpv3, and low levels of Trpv1 mRNAs. TRPV4 protein was localized to basal and intermediate epithelial strata, keratocytes, and the endothelium in contrast to the cognate TRPV1, which was confined to intraepithelial afferents and a sparse subset of CECs. The TRPV4 agonist GSK1016790A induced cation influx and calcium elevations, which were abolished by the selective blocker HC067047. Hypotonic solutions, membrane strain, and moderate heat elevated [Ca2+]CEC with swelling- and temperature-, but not strain-evoked signals, sensitive to HC067047. GSK1016790A and swelling evoked calcium-dependent ATP release, which was suppressed by HC067027 and the hemichannel blocker probenecid. Conclusions: These results demonstrate that cation influx via TRPV4 transduces osmotic and thermal but not strain inputs to CECs and promotes hemichannel-dependent ATP release. The TRPV4-hemichannel-ATP signaling axis might modulate corneal pain induced by excessive mechanical, osmotic, and chemical stimulation.


Assuntos
Epitélio Corneano/metabolismo , Mecanotransdução Celular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Eletrofisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica , Técnicas de Patch-Clamp , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPV/genética
6.
EMBO Rep ; 21(2): e48097, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31782602

RESUMO

TMEM16A, a Ca2+ -activated Cl- channel, is known to modulate the excitability of various types of cells; however, its function in central neurons is largely unknown. Here, we show the specific expression of TMEM16A in the medial habenula (mHb) via RNAscope in situ hybridization, immunohistochemistry, and electrophysiology. When TMEM16A is ablated in the mHb cholinergic neurons (TMEM16A cKO mice), the slope of after-hyperpolarization of spontaneous action potentials decreases and the firing frequency is reduced. Reduced mHb activity also decreases the activity of the interpeduncular nucleus (IPN). Moreover, TMEM16A cKO mice display anxiogenic behaviors and deficits in social interaction without despair-like phenotypes or cognitive dysfunctions. Finally, chemogenetic inhibition of mHb cholinergic neurons using the DREADD (Designer Receptors Exclusively Activated by Designer Drugs) approach reveals similar behavioral phenotypes to those of TMEM16A cKO mice. We conclude that TMEM16A plays a key role in anxiety-related behaviors regulated by mHb cholinergic neurons and could be a potential therapeutic target against anxiety-related disorders.


Assuntos
Habenula , Animais , Ansiedade/genética , Neurônios Colinérgicos , Camundongos , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 294(48): 18421-18434, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619514

RESUMO

Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.


Assuntos
Células Ependimogliais/metabolismo , Ativação do Canal Iônico/fisiologia , Neuroglia/metabolismo , Oócitos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Tamanho Celular , Células Ependimogliais/citologia , Feminino , Ativação do Canal Iônico/genética , Camundongos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Oócitos/citologia , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Fosforilação , Ratos , Canais de Cátion TRPV/genética , Xenopus laevis
9.
Invest Ophthalmol Vis Sci ; 60(6): 2294-2303, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117121

RESUMO

Purpose: The concentration of protons in the aqueous humor (AH) of the vertebrate eye is maintained close to blood pH; however, pathologic conditions and surgery may shift it by orders of magnitude. We investigated whether and how changes in extra- and intracellular pH affect the physiology and function of trabecular meshwork (TM) cells that regulate AH outflow. Methods: Electrophysiology, in conjunction with pharmacology, gene knockdown, and optical recording, was used to track the pH dependence of transmembrane currents and mechanotransduction in primary and immortalized human TM cells. Results: Extracellular acidification depolarized the resting membrane potential by inhibiting an outward K+-mediated current, whereas alkalinization hyperpolarized the cells and augmented the outward conductance. Intracellular acidification with sodium bicarbonate hyperpolarized TM cells, whereas removal of intracellular protons with ammonium chloride depolarized the membrane potential. The effects of extra- and intracellular acid and alkaline loading were abolished by quinine, a pan-selective inhibitor of two-pore domain potassium (K2P) channels, and suppressed by shRNA-mediated downregulation of the mechanosensitive K2P channel TREK-1. Extracellular acidosis suppressed, whereas alkalosis facilitated, the amplitude of the pressure-evoked TREK-1-mediated outward current. Conclusions: These results demonstrate that TM mechanotransduction mediated by TREK-1 channels is profoundly sensitive to extra- and intracellular pH shifts. Intracellular acidification might modulate aqueous outflow and IOP by stimulating TREK-1 channels.


Assuntos
Concentração de Íons de Hidrogênio , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Pressão , Malha Trabecular/fisiologia , Células Cultivadas , Humanos , Mecanotransdução Celular/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp
10.
Sci Adv ; 5(3): eaav0316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30906861

RESUMO

Monoamine oxidase-B (MAO-B) has recently emerged as a potential therapeutic target for Alzheimer's disease (AD) because of its association with aberrant γ-aminobutyric acid (GABA) production in reactive astrocytes. Although short-term treatment with irreversible MAO-B inhibitors, such as selegiline, improves cognitive deficits in AD patients, long-term treatments have shown disappointing results. We show that prolonged treatment with selegiline fails to reduce aberrant astrocytic GABA levels and rescue memory impairment in APP/PS1 mice, an animal model of AD, because of increased activity in compensatory genes for a GABA-synthesizing enzyme, diamine oxidase (DAO). We have developed a potent, highly selective, and reversible MAO-B inhibitor, KDS2010 (IC50 = 7.6 nM; 12,500-fold selectivity over MAO-A), which overcomes the disadvantages of the irreversible MAO-B inhibitor. Long-term treatment with KDS2010 does not induce compensatory mechanisms, thereby significantly attenuating increased astrocytic GABA levels and astrogliosis, enhancing synaptic transmission, and rescuing learning and memory impairments in APP/PS1 mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , D-Aminoácido Oxidase/genética , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , D-Aminoácido Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Selegilina/efeitos adversos , Selegilina/farmacologia , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/genética
11.
Mol Pharmacol ; 95(4): 433-441, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30679204

RESUMO

Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1, a member of TRP channel family, is specifically activated by natural products such as allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrated that TRPA1 is also a target of trans-anethole in fennel oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1 channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the amino acids S873 and T874 binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione, a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the ST binding site. Finally, it was found that trans-anethole was capable of desensitizing TRPA1, and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, nonelectrophilic, and seemingly less-irritating agonist of TRPA1.


Assuntos
Anisóis/farmacologia , Óleos Voláteis/farmacologia , Canal de Cátion TRPA1/agonistas , Derivados de Alilbenzenos , Animais , Canais de Cálcio/metabolismo , Foeniculum/química , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
12.
J Gen Physiol ; 150(12): 1660-1675, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30446509

RESUMO

Mechanotransduction by the trabecular meshwork (TM) is an essential component of intraocular pressure regulation in the vertebrate eye. This process is compromised in glaucoma but is poorly understood. In this study, we identify transient receptor potential vanilloid isoform 4 (TRPV4) and TWIK-related potassium channel-1 (TREK-1) as key molecular determinants of TM membrane potential, pressure sensitivity, calcium homeostasis, and transcellular permeability. We show that resting membrane potential in human TM cells is unaffected by "classical" inhibitors of voltage-activated, calcium-activated, and inwardly rectifying potassium channels but is depolarized by blockers of tandem-pore K+ channels. Using gene profiling, we reveal the presence of TREK-1, TASK-1, TWIK-2, and THIK transcripts in TM cells. Pressure stimuli, arachidonic acid, and TREK-1 activators hyperpolarize these cells, effects that are antagonized by quinine, amlodipine, spadin, and short-hairpin RNA-mediated knockdown of TREK-1 but not TASK-1. Activation and inhibition of TREK-1 modulates [Ca2+]TM and lowers the impedance of cell monolayers. Together, these results suggest that tensile homeostasis in the TM may be regulated by balanced, pressure-dependent activation of TRPV4 and TREK-1 mechanotransducers.


Assuntos
Sinalização do Cálcio , Mecanotransdução Celular , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Malha Trabecular/metabolismo , Adulto , Ácido Araquidônico , Humanos , Potenciais da Membrana , Pessoa de Meia-Idade , Pressão , Cultura Primária de Células , Canais de Cátion TRPV/fisiologia , Malha Trabecular/citologia
13.
Exp Mol Med ; 50(11): 1-13, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30416196

RESUMO

Two-pore domain K+ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.


Assuntos
Giro Denteado/metabolismo , Potenciais Pós-Sinápticos Excitadores , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Multimerização Proteica , Animais , Células COS , Chlorocebus aethiops , Giro Denteado/citologia , Giro Denteado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Neurotensina/metabolismo
14.
Adv Exp Med Biol ; 1074: 553-560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721987

RESUMO

The transient receptor potential vanilloid isoform 4 (TRPV4) functions as polymodal transducer of swelling, heat, stretch, and lipid metabolites, is widely expressed across sensory tissues, and has been implicated in pressure sensing in vertebrate retinas. Although TRPV4 knockout mice exhibit a variety of mechanosensory, nociceptive, and thermo- and osmoregulatory phenotypes, it is not known whether the transmission of light-induced signals in the eye is affected by the loss of TRPV4. We utilized field potentials, a measure of rod and cone signaling, to determine whether TRPV4 impacts on the generation and/or transmission of the photoreceptor light response and neurotransmission. Luminance intensity-response relationships were acquired in anesthetized wild-type and TRPV4-/- mice and evaluated for peak amplitude and implicit time under scotopic and photopic conditions. We found that the morphology of the outer retina is unaffected by the ablation of the Trpv4 gene. Calcium imaging of dissociated Müller glia showed that selective TRPV4 stimulation induces oscillatory calcium signals in adjacent rods. However, no differences in scotopic or photopic light-evoked signaling in the distal retina were observed in TRPV4-/- eyes, suggesting that TRPV4 signaling in healthy Müller cells does not modulate the transmission of light-evoked signals at rod and cone synapses.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Canais de Cátion TRPV/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Eletrorretinografia , Células Ependimogliais/química , Células Ependimogliais/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Ganglionares da Retina/química , Células Ganglionares da Retina/fisiologia , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
15.
Neural Regen Res ; 13(2): 207-210, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29557361

RESUMO

Unesterified cholesterol controls the fluidity, permeability and electrical properties of eukaryotic cell membranes. Consequently, cholesterol levels in the retina and the brain are tightly regulated whereas depletion or oversupply caused by diet or heredity contribute to neurodegenerative diseases and vision loss. Astroglia play a central role in the biosynthesis, uptake and transport of cholesterol and also drive inflammatory signaling under hypercholesterolemic conditions associated with high-fat diet (diabetes) and neurodegenerative disease. A growing body of evidence shows that unesterified membrane cholesterol modulates the ability of glia to sense and transduce ambient information. Cholesterol-dependence of Müller glia - which function as retinal sentinels for metabolic, mechanical, osmotic and inflammatory signals - is mediated in part by transient receptor potential V4 (TRPV4) channels. Cholesterol supplementation facilitates, whereas depletion suppresses, TRPV4-mediated transduction of temperature and lipid agonists in Müller cells. Acute effects of cholesterol supplementation/depletion on plasma membrane ion channels and calcium homeostasis differ markedly from the effects of chronic dyslipidemia, possibly due to differential modulation of modality-dependent energy barriers associated with the functionality of polymodal channels embedded within lipid rafts. Understanding of cholesterol-dependence of TRP channels is thus providing insight into dyslipidemic pathologies associated with diabetic retinopathy, glaucoma and macular degeneration.

16.
Glia ; 65(12): 2038-2050, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28856727

RESUMO

Over- and underexposure to cholesterol activates glia in neurodegenerative brain and retinal diseases but the molecular targets of cholesterol in glial cells are not known. Here, we report that disruption of unesterified membrane cholesterol content modulates the transduction of chemical, mechanical and temperature stimuli in mouse Müller cells. Activation of TRPV4 (transient receptor potential vanilloid type 4), a nonselective polymodal cation channel was studied following the removal or supplementation of cholesterol using the methyl-beta cyclodextrin (MßCD) delivery vehicle. Cholesterol extraction disrupted lipid rafts and caveolae without affecting TRPV4 trafficking or membrane localization protein. However, MßCD suppressed agonist (GSK1016790A)- and temperature-evoked elevations in [Ca2+ ]i , and suppressed transcellular propagation of Ca2+ waves. Lowering the free membrane cholesterol content markedly prolonged the time-course of the glial swelling response, whereas MßCD:cholesterol supplementation enhanced agonist- and temperature-induced Ca2+ signals and shortened the swelling response. Taken together, these data show that membrane cholesterol modulates polymodal transduction of agonists, swelling and temperature stimuli in retinal radial glia and suggest that dyslipidemic retinas might be associated with abnormal glial transduction of ambient sensory inputs.


Assuntos
Colesterol/metabolismo , Células Ependimogliais/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Células Cultivadas , Colesterol/farmacologia , Células Ependimogliais/efeitos dos fármacos , Feminino , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Microdomínios da Membrana , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Retina/citologia , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura
17.
J Physiol ; 595(22): 6869-6885, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949006

RESUMO

KEY POINTS: Endothelial cells employ transient receptor potential isoform 4 (TRPV4) channels to sense ambient mechanical and chemical stimuli. In retinal microvascular endothelial cells, TRPV4 channels regulate calcium homeostasis, cytoskeletal signalling and the organization of adherens junctional contacts. Intracellular calcium increases induced by TRPV4 agonists include a significant contribution from calcium release from internal stores. Activation of TRPV4 channels regulates retinal endothelial barriers in vitro and in vivo. TRPV4 sensing may provide a feedback mechanism between sensing shear flow and eicosanoid modulators, vascular permeability and contractility at the inner retinal endothelial barrier. ABSTRACT: The identity of microvascular endothelial (MVE) mechanosensors that sense blood flow in response to mechanical and chemical stimuli and regulate vascular permeability in the retina is unknown. Using immunohistochemistry, calcium imaging, electrophysiology, impedance measurements and vascular permeability assays, we show that the transient receptor potential isoform 4 (TRPV4) plays a major role in Ca2+ /cation signalling, cytoskeletal remodelling and barrier function in retinal microvasculature in vitro and in vivo. Human retinal MVE cells (HrMVECs) predominantly expressed Trpv1 and Trpv4 transcripts, and TRPV4 was broadly localized to the plasma membrane of cultured cells and intact blood vessels in the inner retina. Treatment with the selective TRPV4 agonist GSK1016790A (GSK101) activated a nonselective cation current, robustly elevated [Ca2+ ]i and reversibly increased the permeability of MVEC monolayers. This was associated with disrupted organization of endothelial F-actin, downregulated expression of occludin and remodelling of adherens contacts consisting of vascular endothelial cadherin (VE-cadherin) and ß-catenin. In vivo, GSK101 increased the permeability of retinal blood vessels in wild type but not in TRPV4 knockout mice. Agonist-evoked effects on barrier permeability and cytoskeletal reorganization were antagonized by the selective TRPV4 blocker HC 067047. Human choroidal endothelial cells expressed lower TRPV4 mRNA/protein levels and showed less pronounced agonist-evoked calcium signals compared to MVECs. These findings indicate a major role for TRPV4 in Ca2+ homeostasis and barrier function in human retinal capillaries and suggest that TRPV4 may differentially contribute to the inner vs. outer blood-retinal barrier function.


Assuntos
Junções Aderentes/metabolismo , Cálcio/metabolismo , Células Endoteliais/metabolismo , Vasos Retinianos/citologia , Canais de Cátion TRPV/metabolismo , Potenciais de Ação , Animais , Barreira Hematorretiniana/metabolismo , Sinalização do Cálcio , Células Cultivadas , Células Endoteliais/citologia , Retroalimentação Fisiológica , Humanos , Leucina/análogos & derivados , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Ocludina/genética , Ocludina/metabolismo , Pirróis/farmacologia , Vasos Retinianos/metabolismo , Sulfonamidas , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores
18.
J Physiol ; 595(20): 6499-6516, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766743

RESUMO

KEY POINTS: Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked signals with ambient mechanical, chemical and temperature information. Localization and function of the polymodal non-selective cation channel TRPV1 (transient receptor potential vanilloid isoform 1) remains elusive. TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in the mid-peripheral retina. Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors (CB1Rs) and cAMP pathways. Activity-dependent endocannabinoid release may modulate signal gain in RGCs through simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R. ABSTRACT: How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1 (transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet the proportion of RGCs that express it remains unclear. Furthermore, TRPV1's response to endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+ ]i in 30-40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide), and lacking in Trpv1-/- cells. The cannabinoid receptor type 1 (CB1R) colocalized with TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122 inhibited CAP-induced [Ca2+ ]i signals in adult, but not early postnatal, RGCs. The suppressive effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A (PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin, and absent in Cnr1-/- RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde eCB-mediated modulation of RGC signalling involves a dynamic push-pull between direct TRPV1 activation and PKA-dependent regulation of channel inactivation, with potential functions in setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and neuroprotection.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
19.
Sci Rep ; 6: 30583, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510430

RESUMO

An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca(2+) influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca(2+)-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension.


Assuntos
Cálcio/metabolismo , Citoesqueleto/metabolismo , Canais de Cátion TRPV/metabolismo , Malha Trabecular/fisiologia , Animais , Membrana Celular/metabolismo , Homeostase , Humanos , Pressão Intraocular , Camundongos , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/genética , Hipertensão Ocular/metabolismo , Pirróis/administração & dosagem , Pirróis/farmacologia , Canais de Cátion TRPV/genética , Malha Trabecular/citologia
20.
Channels (Austin) ; 10(5): 421-427, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27221769

RESUMO

The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Células Ependimogliais/fisiologia , Animais , Comunicação Autócrina , Feminino , Masculino , Camundongos , Comunicação Parácrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA